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Abrtract. The effect of snong elecrron-electron interactions (described by the single-band 
Hubbard Hamiltonian) on the electronic spectrum and cohesive energies of subsritutionall) 
disordered alloys has beenstudied. We use the Hubbard 111 solution 10 treat [hecorrelations 
and coherent-potentidl approximation for wnfiguraticnal avenging. The use of the Lor- 
enlzian form of [he host metal density of stares enable? us IO obtain analytical exprcssions 
for various quantiries of interns. Quesaions rclarcd to Ihe problem of the calculations 
of coherire energies in disordered systems wilh corrclarions are discussed and partially 
resolbed. 

1. Introduction 

The electron-electron interactions play a particularly profound role in narrow-band 
materials. Theoretical attempts at description of the so-called correlated electrons in 
such systems have a long history and are connected with the names of Mott (1949,1961), 
Hubbard (1963, 1964), Anderson (1959) and many others (for a review see Cyrot 
(1977)). Most of the work has been devoted to the study of clean systems, even though 
some interesting applications are concerned with disordered alloys (Spaiek and Honig 
1991). The problem of electron correlations in disordered alloys has been discussed 
previously (Wysokihski 1981) mainly in connection with the temperature dependence 
of conductivity in disordered transition-metal alloys. 

Recently a renewed interest in the theory ofstronglycorrelated electronsisobserved, 
which is due to the fact that the parent compounds of the high-temperature super- 
conductors La2Cu04 and YBa2Cu30, are probably Mot1 insulators that undergo an 
insulator-to-metal transition after doping. 

Doped materials are quite disordered, and some of them as, for example, 
La,_,CuO,, Ba,-.K,BiO,orBaPbl-,Bi,O3arealloys. It might therefore beinteresting 
to study the combined effect of correlation and disorder on their properties. 

In this work we shall be dealing only with the normal state properties of A,B,-, 
alloys without referring to particular materials. We also limit our discussion to the 
paramagnetic phase leaving the problems of magnetic ordering for future studies. 

In section 2 we shall describe the model and general scheme of treating disorder and 
electron-electron correlations on the same footing, which is the coherent-potential 
approximation (CPA). For the purposes of illustration we shall assume a Lorentzian 
density of states, which enables us to solve the resulting CPA equations exactly. Section 
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3 is devoted to the calculation of cohesive energies and the interplay between disorder 
and electron correlations. Some discussion connected with the difficult problem of the 
enthalpy of formation and the role of electron correlation is also given. We conclude the 
work in section 4. 

K I Wysokitiski and G Litak 

2. Model and its solutions 

We assume the alloy to be described by the Hubbard Hamiltonian 

H = C Einio + E' tiiat,aio + 4 C Uinioni-o 
io ijo io 

where for an A$,-, alloy the parameters cir U; take on the values E ~ ,  U, ( E ~ ,  U,) 
dependingonwhetherthesiteiisoccupied byanA(B)-typeatom.The hoppingintegrals 
fii are assumed to be independent of the alloying and different from zero for nearest- 
neighbour sites only, 

1 
ti, = -E E~ exp[ik(& - Ri)]  

N k  
(2.2) 

where N is number of sites in the crystal and 

be expressed through E )  as 

is the energy spectrum of the electrons. 
The density of states (DOS) of the 'host' metal (i.e. that with E; = 0, U; = 0) Dg will 

(2.3) 

As already mentioned for the purpose of this work we shall use the Lorentzian shape 
for Dg(w) 

(2.4) 

where 2 0  is the band width of the host metal. This is not a very realistic DOS as it is 
unbounded and none of its moments, except for the zeroth one, exist. It is, however, 
theoretically very attractive as all the calculations can be done analytically, as we shall 
see. The model assumes the same band width for both A and B. 

- E ~ I =  D and also the strong 
correlations U A / D ,  U B / D  2 1. To treat site-diagonal disorder we shall use the CPA 
(Soven 1967). Thecorrelations will be studied in Hubbard'salloy analogy approximation 
in the version of the Hubbard 111 solution (Hubbard 1964). These two methods have 
beenshown previously (Velickyerall968, seealso Acquaroneetaf 1982) to beequivalent 
in their mathematical structure. They also have been already used to study the effect of 
correlations on the electrical conductivity of alloys in the two-band model by Elk et af 
(1979) and in a single-band model with off-diagonal and thermal disorder by Wysokinski 

In an alloy an electron with spin apropagating through the system scatters with the 
atoms. If the encountered atom is of type i and no electron is present on it the scattering 
potential is E ~ ;  if on the other hand the atom already has -a electrons present then the 

We are interested here in the strong disorder 

(1981). 
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corresponding potential is &, + U,. The system in this approximation looks like a four- 
component alloy with scattering potentials 

v, = (EA;  &E; EA + UA; &s + U,) (2.5) 

and the corresponding probabilities of their occurrence 

f; = {c,, N P }  = (X(I - nA -o); (1 - x) (1 - nB -o); xnA (1 - x)ng-o )  (2.6) 

where c, = { x ,  1 - x } ,  N ,  = {l - n,-,, ,  n,-,}fori = A, B. 
Let the averaged system be described by the as yet unknown optical potential Y ( w ) ,  

The CPA method to find this is to require the vanishing of the averaged single-site 
scattering matrix Tp defined for the system with the potential V, present at site i, with 
all other sites being described by Y ( w )  

where 

1 
N N w - &k - F y w )  N x 

=-E GZ(w) 
1 1 

GU(UJ)=-E- 

(2.7) 

is the single-site (Koster-Slater) Green function dcfined for the averaged medium. The 
single-site Green function G; (averaged ovcr 'sites' different from v )  is given by 

(2.9) Gt = G'(w)/{l - [ V ,  - Z"(O)]C"(O)] 

and the CPA condition (2.7) can be shown to be equivaleni to 

(2.10) 

Let us note that the number of 'effective' v sites is double the number of real i sites, cf 
(2.5) and (2.6). 

To proceed we use the host metal density of states (2.4) and obtain 

and 

G:(w) = l /(w - V, + iDsgnImw). (2.12) 

From the last two expressions and (2.10) we find 
4 

~ ( w )  = w + iDsgnImo - (2.13) 

To complete the solution of the problem we have to calculate the parameters nA-o  and 



4938 K 1 Wysokihki and G Litak 

0.10 0.1c 

I ,  ( 1  
, I  1 
1 1 :  

005 I 0.05 
I 
t 

-. ‘\ :: , 
4 -,’ L.‘ 

OM, 0.OC 
-10 -5 0 5 10 15 M 

Figure 1. The alloy dcnriticrof staler D ( E )  (full curves) and the imaginav part of thc self. 
energies Im Z(E) (broken cunes) as functions of energy for x = 0.3. cA = 0. cB = 5 .  U, = 
I O  ui lh:  (a). U. = IO; (b)  U. = 5. Er denotes the Fermi energy for n = 0.9 D dcnorcr !he 
hall band wdlh.  

nB-o entering the definition of the probabilities in (2.6). In the limit T =  0 K we are 
interested in, and in the paramagnetic phase nA-o = nAo = nA/2, they are given by 

n. =- dw Im (?;(U + io) i = A, B. (2.14) 

The factor in (2) stems from the spin summation, and 

Gi(w) = (1 - n;/Z)/{C-’(w) - [ E ;  - E ( w ) ] }  + (ni/2)/{G-’(w) - [E;  - U; - E(w) ] } .  
(2.15) 

The Fermi energy .EF i s  calculated from the total number of electrons, n,  in the system, 
via 

dw Im G(w + io) (2.16) 

and obviously fulfils the requirement n = xnA + (1 - x)ne.  
For the Lorentzian DOS we are using here the integrals in (2.14) and (2.16) can easily 

be performed analytically. We shall not give the results here. Equations (2.10), (2.14), 
(2.15) and (2.16), together with delinitions (2.5) and (2.6), form a self-consistent set of 
equations. The density of states is given by 

(2.17) 

In figures l(a, b) we show the densities of states calculated from (2.17) and the 
imaginary part of the self-energies (2.13). We have taken x = 0.3 and the following 
values of other parameters (in units of half the band width, D = 1): figure l(a), = 0, 
E~ = 5 ,  U, = U, = 10; figure l(b), E,, E, and U, have the same values but U, = 5. The 
last set of parameters is interesting as the resonance energies for double occupation 
.si + U, are the same for the A and B atoms. Note that the inverse of Im Z ( w )  is 
proportional to the quasiparticle lifetime r(w).  It is seen that contrary to the clean case 
the Hubbard gap can be obtained for n # 1. This feature may be very important for the 
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Figure 2. The Fermi energy EF as a function of electron concentration for the same sets of 
parameters as in figures I(a) and (b) ,  respectively. The curves labelled 1 to 5 correspond to 
alloyconcenrrationsofx=0.0,0.3,0.5,0.7,1.0. 

analysis of the energy spectrum in strongly correlated and disordered (with-strong- 
disorder scattering) systems. The arrow shows the position of the Fermi energy cal- 
culated for the electron concentration n = 0.9. 

Figure 2(a, b) shows the dependence of the position of the Fermi energy on the 
electron concentration for the same set of parameters as in figure l(a, b),  respectively, 
but for a number of values of x. 

In our model there is no particle-hole symmetry, in general. For U, = U,, however, 
there is some generalized symmetry in respect of the simultaneous replacement 
n + 2 - n and x + 1 - x. This also holds true for the behaviour of the cohesive energy 
as a function of electron concentration n to be studied in the next section. 

3. Cohesive energy of an alloy 

Thecalculationofthecohesiveenergiesisoneofthemostdifficultproblemsin thetheory 
of solids. The number of questions connected with the problem has been explained by 
the French school with Friedel (1969), Cyrot and Cyrot-Lackmann (1976) and others 
(see, e.g., Sayers (1977). Kajzar and Mizia (1977)). Recently the cohesive energies of 
the 5d transition metals have been calculated from first principles (Fernando eta1 1990). 

For a (essentially free-electron) metal or alloy the cohesive energy is simply defined 
as the difference between the ground state energy of the solid and the energy of its 
constituent species. In the tight-binding scheme and for the one-band (d-band) model 
it can be written as 

EF 
E, = [ (w - &@(w) dw (3.1) 

’-= 

where ed is the position of the atomic d level and D(w) is the total one-particle density 
of states function. 
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Equation (3.1) requiressomemodification ifoneisstudying theeffect oftheelectron- 
electron interaction on E,. It has been found by Kjollerstromet d(1966) that thecorrect 
expression for the ground state energy is 

EF 

ELmd =; (I dw Im{[w - &Z:"(w)] F,(w)}. (3.2) 

Here Y ( w )  is the proper Coulomb self-energy and FJw) is the on-site Green function. 
The problem we are studying is more complicated as in the alloy the contributions 

to the self-energy from many-body interactionsandimpurityscatteringare not ingeneral 
additiveandnosimplegeneralizationsto(3.l)or(3.2)arepossible. To find the required 
expression we shall start with our Hamiltonian and found the ground state energy as its 
expectation value 

E$({[)) = ( H )  = ~ ~ ( a ~ ~ a ; , )  + t,j(a:oaj,) + 4 Ui(nf-,n;,) (3.3) 

where the sign {i} is used as an indication that the energy of the system is calculated for 
agivendistributionofatomsinasolid,soit will beasubjectofconfigurationalaveraging. 

The correlators in (3.3) can be expressed in terms of the corresponding Green 
functions by means of the spectral representation. We find it convenient to work with 
thermodynamic two-time Green functionsand at the end calculate the zero-temperature 
limit necessary in order to obtain the ground state energy. The two-particle correlation 
function can, as usual, be expressed in terms of the one-particle Green function 

From the equation of motion for Gp(w)-the Fourier transform of G;(t)-one finds 

io ijo io 

GT(0 = ((a;o(OIa;e(O))). 

[ ( U  - &,)dV - tq]G,"(w) = 6,j + U ; ( ( ~ ~ ~ n ; - ~ ~ a ~ , , ) ) ~  (3.4) 
? 

and from the spectral representation at T = 0 K (Zubariev 1960) 
1 "  1 'F 

(ni0nt-J = -I dw (4,(n joni-o))n, = ac - dw Im ( ( a m -  140))m +io (3.5) 
2Jr - T  - x  

and similarly 
EF 

b!,ai,)  = - dwImE(aiola:,))m+i~. ( 3 4  :I-, 
Using (3.3) to (3.5) in (3.2) we find the ground state energy of a given configuration of 
atoms in an alloy as 

Ebd({i}) = (- L, 2n, jEF dw [ (w + e i )d jI  + rii]Im G;(w + io). (3.7) 
PO 

For practical purposes and in the spirit of the CPA we average the equation (3.7) over 
various configurations and obtain the ground state energy per site 

(3.8) 
0 - x  

Usingexpression (3.8) for Ck(w) we obtain for the A$,- ,  alloy 
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+ (1 - X ) E g C g ( W + ) }  w' =a, +io  (3.9) 
where GP is the Green function defined in (2.15). 

it reduces to (3.2) and also for U ,  = U ,  = 0, where it reduces to (3.1) as it should. 

of free atoms. They are described by the Hamiltonian 

Our expression (3.9) possesses the correct limiting behaviour forx = 0, x = 1 where 

Toobtainthecohesiveenergywe havetosubtractfrom(3.8)theenergyofacollection 

H = ~ ( E i n i + u ; n i l n i t ) = ~ [ E i ~ ; + u i ( n ; - n i t ) ~ i t ]  n ; = n ; ,  + n i l .  
i i 

(3.10) 

Calculation of the ground state energy in the atomic limit can be performed in the same 
way as has been done by Acquarone et a1 (1982). To this end let us note that the Fermi 
energy, which in general is not well defined for continuous values of n will stay at the 
level E* (E, < E ~ )  until the level is fully occupied when the concentration of electrons n 
reaches the value n = x and it then jumps to the next level at higher energy. For the 
parameters such that 

E A < E B < E A +  u , < E g + u B  (3.11) 

the Fermi level jumps to and stays there until it is fully occupied with 1 - x  electrons 
on it. At this moment all the sites in the system are singly occupied and for n > 1 the 
Fermi level jumps to E, + U, and then to eg + U,. We thus obtain in the present case 
E% = nEA n < x  (3.12~) 

E$ = XEA + (n -.x)EB x < n < l  (3.126) 

Ea[ . - X & A + ( l - X ) & s f ( E A + ( I A ) ( n - l )  - l < n < l + x  (3.12c) 

Eat G - - XEA + (1 - X ) E B  f x(&A + U,) f ( E B  + UB)(n - 1 - x) 1 + x < n  <2. 
(3.12d) 

Similar expressions can be found in other non-trivial cases with a different ordering of 
the energy levels: E, < E~ < E~ + Ug < + U ,  and EA < EA + U ,  < EB < €6 + Ug. 

The cohesive energy E, is thus given by 
E, = E$nd - Ea[ G. (3.13) 

Before we evaluate the cohesive energy of an alloy let us note that the expressions 
derived in this section can be used for a study of the enthalpy of formation of the alloy 
and the effect of electron interactions on it, with important extensions to the problems 
of phase stabilities. 

The enthalpy of formation is usually defined (Cyrot and Cyrot-Lackmann 1976) as 
the differencebetween the cohesive energy (3.13) and the weighted energy of the pure 
metals forming the alloy 

E ;  
E, - X 1'' o D A ( w )  d o  - (1 - X) W&(W) dw. (3.14) 

Again this expression is valid for the free-electron alloy. (For a recent calculation of the 
mixing enthalpies of alloys see Wei et ai (1990).) 

-c' -P 
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Figure 3. The cohesive energy Ea as a function of the electron concentration n for several 
alloy concentrations x = 0.0.0.3.0.5.0.7.  1.0: the other parameters being the same as in 
figures I(a) and ( b ) .  respectively. 

In the correlated system (U,+, U, # 0) the enthalpy of formation should be defined 
as the difference between E, and the weighted sum of the cohesive energies of pure A 
and B metals, thus 

AH = &(alloy) - xE,(A) - (1 - x)E,(B). (3.15) 

By expressing the total self-energy in our model as a sum 

Z = Z:alloy + x u  + Z m i x  (3.16) 

where Zalloy is that part of Z that is due to disorder, &,is connected with the interactions 
U, and Zmlx is the part due to the interplay between disorder and interactions; we see 
from (3.15) that to leading order AH does not depend on Xu. 

This is one reason why we do not study in detail the enthalpy of formation of an alloy, 
another reason being the crudeness of our model, which does not take into account the 
different band widthsof the constituent alloys-afeature that has previously been found 
(Cyrot and Cyrot-Lackmann 1976) to be of primary importance. 

The cohesive energy of the strongly correlated alloyt is plotted in figures3(a)-(b) as 
afunctionofclectron densityn and for different alloyconcentrationsx. Other parameters 
are the same as in the corresponding earlier figures. E&, x) is in general a complicated 
function of n,  the shape of which depends strongly on the alloy parameters. We believe 
that the observed asymmetries in the cohesive energy and heat of formation can, to a 
large extent, be explained by the effects of alloying. In the limit of pure metalsx = 0 or 
x = 1 our data reduce to those obtained by Acquarone et aL(1982). 

In figure 4 we have shown the enthalpy of formation as a function of the electron 
concentration n. The detailed shape of the function depends on the alloy parameters. 
The curve in this figure marked with open symbols strongly resembles the experimental 
dataon Ni alloys as reproduced in Cyrot and Cyrot-Lackmann (1976). 

The model we have studied possesses four parameters. These are the concentration 
x ,  thescatteringpotential 6 = ( E ~  - EA)/D,andthecorrelations UA/Dand U,/D.These 
can, in fact, be calculated from first principles nowadays. 

t Note. that we have defined it to be positive for condensed system. 
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Figure4.Thealloyfomationenthalpy AH asa func- 
tion of electron concentration n. The open symbols 
areobtained for the alloy described by the parameters 
offigure I(a) and Iullcirclescorrespondtoparameters 
of figure l(b). 

The analytical expressions for all the relevant quantities make it easy to study their 
behaviour as a function of the alloy parameters and the application to diverse systems. 

4. Conclusions 

We have studied the static properties of strongly correlated alloys by means of Hubbard- 
111 and coherent-potential approximations. The use of the Lorentzian host metal density 
of states enabled us to find an analytical expression for the averaged density of states, 
the self-energy and the cohesive energy. This work can thus be viewed as an extension 
of the work of Acquarone et a1 (1982). 

We have derived a formula for the cohesive energy of the alloy system. Our 
expression for E, reduces to those used previously. It automatically takes care of the 
many-body and single-particle aspects of the problem. The expression (3.8) is thus very 
general and does not depend on the approximation used to treat disorder and electron 
interactions in the Hubbard model. 

We believe that some of the discrepancies between theory and experiment discussed 
by Acquarone et a1 (1982) can be explained in our model. Our model does violate 
particlehole symmetry, and the absence of this symmetry can be traced back to the 
alloying for UA = U, and to the dependence of U on the type of atom occupying a given 
site. The experimental data on the cohesive energy of 4d and 5d alloys (see figures 12 
and 13 in Fernando et a1 (1990)) do not in fact show particle-hole symmetry and this 
may be because of alloying or of different values of the U-parameters along the series. 
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